Many of the most popular intelligent training systems, including driving and flight simulators, generate user time series data. In this project, we try to present a comparison of representation options for two different student modeling problems: 1) early failure prediction and 2) classifying student activities. Data for this analysis was gathered from pilots executing simple tasks in a virtual reality flight simulator. We demonstrate that our proposed embedding which uses a combination of dynamic time warping (DTW) and multidimensional scaling (MDS) is valuable for both student modeling tasks.